US009152547B2

a2 United States Patent 10) Patent No.: US 9,152,547 B2
Lee et al. (45) Date of Patent: Oct. 6, 2015
(54) APPARATUS AND METHOD FOR SCRATCH (56) References Cited

PAD MEMORY MANAGEMENT

(75) Inventors: Jae Don Lee, Paju-si (KR); Shi Hwa
Lee, Seoul (KR); Seung Won Lee,
Hwaseong-si (KR); Chae Seok Im,
Suwon-si (KR); Min Kyu Jeong,
Seongnam-si (KR)

(73) Assignee: Samsung Electronics Co., Ltd.,
Suwon-si (KR)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1419 days.

(21) Appl. No.: 12/591,946

(22) Filed: Dec. 4, 2009

(65) Prior Publication Data
US 2011/0016285 Al Jan. 20, 2011

(30) Foreign Application Priority Data

Jul. 16,2009 (KR) .ocvevviciciies 10-2009-0064850

(51) Int.CL
GOGF 12/02

(52) US.CL
CPC ... GOGF 12/023 (2013.01); GOGF 12/0292
(2013.01)

(2006.01)

(58) Field of Classification Search
CPC ... GOG6F 12/02; GOG6F 12/023; GOGF 3/064;
GOG6F 12/0223-12/0246; GOGF 12/0886;
GOG6F 2205/063; GOGF 2205/066; GO6F
2211/1021; GOG6F 2212/652

USPC ..coocevnee 711/133, 170-173, 200-210, 221
See application file for complete search history.

710+

Issizeof

Toquested memory size

‘managed by fixed
block pool?

Select free memory ist,
size of the free memory list

U.S. PATENT DOCUMENTS

5,893,159 A *
5,978,893 A * 11/1999 Bakshietal. ...
6,175,900 B1* 1/2001 Forinetal.
6,219,772 B1* 4/2001 Gadangi et al. .
6,363,468 B1* 3/2002 Allison
6,453,404 B1* 9/2002 Bereznyi et al.
6,804,761 B1* 10/2004 Chenetal.
6,836,833 B1* 12/2004 Kinter et al.
7,266,132 B1* 9/2007 Liuetal.
2007/0150654 Al* 6/2007 Shinetal. ...
2008/0168112 Al* 7/2008 Lyons et al.
2009/0172336 Al* 7/2009 Schmidt
2010/0095081 Al* 4/2010 McDavitt et al.

4/1999 Schneiderccccouen. 711/150
L7117
.. 711/156
.. 711/170
. TL/173
L7117
.. 711/170
. TL/173
... 370/538
.o 711/118
... 707/206
.. 711/170
............. 711/171

FOREIGN PATENT DOCUMENTS

JP 2008-9635 1/2008
JP 2008-299455 12/2008
JP 2009/43233 2/2009
KR 10-2007-0096429 10/2007
KR 10-2007-0102485 10/2007
KR 10-2007-0102504 10/2007
KR 10-2008-0068468 7/2008
OTHER PUBLICATIONS

“Classify.” Merriam-Webster.com. Merriam-Webster, n.d. Web.
<http://www.merriam-webster.com/dictionary/classify>. Retrieved
Jul. 8, 2014.*

* cited by examiner

Primary Examiner — Aimee Li
Assistant Examiner — Nicholas Simonetti
(74) Attorney, Agent, or Firm — NSIP Law

(57) ABSTRACT

Disclosed is a scratch pad memory management device and a
method thereof. The scratch pad memory management device
divides a scratch pad memory into a plurality of unit blocks,
maintains a memory allocation table corresponding to indices
of'the plurality of unit blocks in a main memory, and manages
the scratch pad memory.

19 Claims, 8 Drawing Sheets

‘being closst to size of
requested memory

Generate fixed

block pool and add | | Select fixed block

the generated fixed | { pool from free

block pool to free ‘memory list
‘memory list

731

Select memory chuak
from free memory list

block greater than
requested area?

Sepatate memory chunk and
2dd remaining portion to free
‘memory list

No, Are all free

blocks used?
Yes
‘Eliminate fixed block pool
from free memory list

U.S. Patent Oct. 6, 2015

Sheet 1 of 8 US 9,152,547 B2
FIG 1
100
110 120
Memory

managing unit
all MZtIirxllory T

ocating um - = Scratch pad memory

Memory L1 112
releasing unit

U.S. Patent Oct. 6, 2015 Sheet 2 of 8 US 9,152,547 B2

FIG. 2

Memory Allocation Table 210

220

Scratch Pad Memory

US 9,152,547 B2

Sheet 3 of 8

Oct. 6, 2015

U.S. Patent

OWm 0te oNNm
AZIS| e oZ1s NQP« ﬁmﬁ AZIS| e oZ1Is
pajedo[[e [0od o0[q pax1 221y
et e 1ig

0 ~01¢

3[qe], UolRIO[[Y AJOWN

¢ DId

U.S. Patent

Oct. 6, 2015 Sheet 4 of 8
FIG. 4
prev [next
411 412

US 9,152,547 B2

410

U.S. Patent

Oct. 6, 2015 Sheet 5 of 8 US 9,152,547 B2
FIG. 5§
510
size | PTCV neext alll)?ucgggn e
511 512 513 514 515

US 9,152,547 B2

Sheet 6 of 8

Oct. 6, 2015

U.S. Patent

...... o019 cw_mwwwwm 1X0U | aoxd | 921 |\
£29 xau | paxd
229 \
\A XU | Ao1d —— |
129 \ / /
\l\ AIoWwdN
029
€19 ZIS | .eeene azis
019 7 19
zdqy | 1dqy AaZIS | e Jz1s
jood)o01q paxig 119 2213
dJqe L uonedo||y AIOWIN
9 "OIA

azis

4\

U.S. Patent Oct. 6, 2015

710

Is size of
requested memory size
managed by fixed
block pool?

730 ~—

Sheet 7 of 8

FIG. 7

Yes

Select free memory list,
size of the free memory list
being closest to size of
requested memory

Does fixed
block pool exist in free
memory list?

Yes

US 9,152,547 B2

731 ~— v

Select memory chunk
from free memory list

732

Is area to be
allocated more than one
block greater than
requested area?

733

Separate memory chunk and
add remaining portion to free
memory list

2 722~ \
Generate fixed
block pool and add Select fixed block
the generated fixed pool from free
block pool to free memory list
memory list
I |
723 ~ ‘

Select free block by using
bitmap of fixed block pool

A

Update bitmap of fixed
block pool

725

Are all free
blocks used?

726 ~

734 ~— ¥

Update memory allocation
table

Eliminate fixed block pool
from free memory list

‘ |

/
End

U.S. Patent Oct. 6, 2015 Sheet 8 of 8 US 9,152,547 B2

FIG. 8

810 N~
Determine memory chunk to be
released by using memory
allocation table

Is memory chunk Yes

fixed block pool?

830

Are all blocks of
fixed block pool

allocated?

840

Is memory prior

or subsequent to memory Yes 831
free area? Add fixed block pool to
free memory list
841 ~ . ! L {32
Incorpor;alge memﬁc? ry chunk with Calculate location of block of
adjacent free area memory to be released
842\ | [83
Update memory allocation table %E{‘gg%gg;;%g{
843
— 1 834
Update free memory list update “are all blocks of

fixed block pool
free?

Yes L~ 835

Delete fixed block pool from
free memory list

{ L~ 836
Set fixed block pool as
free memory chunk
]

End

US 9,152,547 B2

1
APPARATUS AND METHOD FOR SCRATCH
PAD MEMORY MANAGEMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of Korean Patent Appli-
cation No. 10-2009-0064850, filed on Jul. 16, 2009 in the
Korean Intellectual Property Office, the disclosure of which is
incorporated herein by reference.

BACKGROUND

1. Field

The example embodiments relate to a scratch pad memory
management device and a method thereof, and particularly to
a technology that manages the scratch pad memory by using
a memory allocation table maintained in a main memory.

2. Description of the Related Art

A processor has a fast internal memory to store data. A
processor for an embedded system may use a scratch pad
memory having a simple configuration instead of a cache
memory, and may process data transmission between an
external main memory and the scratch pad memory by using
a direct memory access (DMA). The main memory is an
on-off chip memory, and may include a DRAM, an SDRAM,
and the like.

However, conventionally, an allocation scheme based on a
compiler has been used for utilizing the scratch pad memory.
The allocation scheme analyzes an application program when
compiling is performed, divides the scratch pad memory by
using a result of the analysis, and statically allocates to each
task. In this instance, the task may use only an allocated area,
and thus, when the task operates, an allocated area of another
task may be wasted. Also, the scheme may not be used in an
environment where a task is dynamically generated.

Accordingly, there is desire for a dynamic memory man-
agement scheme appropriate for the scratch pad memory, and
a method thereof.

SUMMARY

Accordingly, it is an aspect of the present invention to
provide an improved dynamic memory scheme.

Additional aspects and/or advantages will be set forth in
part in the description which follows and, in part, will be
apparent from the description, or may be learned by practice
of the invention.

The foregoing and/or other aspects are achieved by provid-
ing a scratch pad memory management device, the device
including a scratch pad memory, divided into a plurality of
unit blocks, a main memory, and a memory managing unit
being maintained in the main memory to manage the scratch
pad memory.

The memory managing unit stores, in a memory allocation
table, metadata managing the plurality of unit blocks. Here,
indices of the plurality of unit blocks respectively correspond
to indices of the metadata stored in the memory allocation
table.

Also, the memory managing unit generates a memory
chunk including at least one unit block among the plurality of
unit blocks of the scratch pad memory, and classifies the
memory chuck as one of a free memory, an allocated memory,
and a fixed block pool to manage the memory chunk.

Also, the fixed block pool of the scratch pad memory
includes a first storing area to store a size of a fixed block, a
second storing area to store an index of a previous fixed block

10

20

25

30

35

40

45

55

2

pool, a third storing area to store an index of a subsequent
fixed block pool, a fourth storing area to indicate an allocation
condition and a release condition of each fixed block, and a
fifth storing area to store use data.

Also, the memory managing unit further includes a
memory allocating unit to manage memory allocation in
response to a memory use request, and the memory allocating
unit allocates a memory of a fixed block pool when a size of
arequested memory is size managed by the fixed block pool,
and allocates a free memory of a free list, the size of the free
memory being greater than the size of the requested memory
and having a smallest difference from the size of the
requested memory when the size of the requested memory is
not a size managed by the fixed block pool.

Also, when a difference between the size of the free
memory of the free list and the size of the request memory is
greater than or equal to the unit block, the memory allocating
unit separates, from the free memory, a free memory corre-
sponding to the difference and adds the separated free
memory to a corresponding free list.

Also, the memory managing unit further includes a
memory releasing unit to manage a memory release in
response to a memory release request. Here, the memory
releasing unit includes a memory incorporating unit, when a
memory prior or subsequent to a memory chunk to be
released is a free memory, to incorporate the free memory and
the memory chunk to be released, a memory allocation table
updating unit to update the memory allocation table in
response to the memory release, a free list updating unit to
update the free list in response to the memory release, a
location calculating unit to calculate a fixed block location of
the memory chunk to be released, and a bitmap updating unit
to update a bitmap that manages the allocation or release of
the fixed block.

According to example embodiments, there may be pro-
vided a scratch pad memory management method, the
method including dividing a scratch pad memory into a plu-
rality of unit blocks, maintaining a memory allocation table in
a main memory to manage the scratch pad memory, and
managing the scratch pad memory by using the memory
allocation table having indices respectively corresponding to
the plurality of unit blocks.

In this instance, the managing of the scratch pad memory
includes generating a memory chunk including at least one
unit block among the plurality of unit blocks of the scratch
pad memory, and classifying the memory chunk as one of a
free memory, an allocated memory, and a fixed block pool.

Also, the managing of the scratch pad memory records a
size of an empty memory in a prior block and a subsequent
block of a memory allocation table that manages the free
memory, when the memory chunk is classified as the free
memory.

Also, the managing of the scratch pad memory records a
size of a memory that is allocated, in a prior block and a
subsequent block of a memory allocation table that manages
the allocated memory, when the memory chunk is classified
as the allocated memory.

Also, the managing of the scratch pad memory includes at
least one of location information and identification informa-
tion in the memory allocation table that manages the fixed
block pool, the identification information identifying the
fixed block pool and the location information recognizing a
location in the fixed block pool, when the memory chunk is
classified as the fixed block pool.

Also, the managing of the scratch pad memory includes
generating a free list where free memories are connected, and

US 9,152,547 B2

3

storing an index of a previous free memory and an index of a
subsequent free memory in the prior block of the free
memory.

Also, the managing of the scratch pad memory includes
allocating a memory in response to a memory use request, and
releasing the memory in response to a memory release
request.

Also, when the size of requested memory is not a size
managed by the fixed block pool, the allocating of the
memory includes allocating a memory of the fixed block pool
when a size of the requested memory is a size managed by the
fixed block pool, and allocating a free memory of a free list,
the size of the free memory being greater than the size of the
requested memory and having a smallest difference from the
size of the requested memory.

Also, when a difference between the size of the free
memory of the free list and the size of the request memory is
greater than or equal to the unit block, the allocating of the
memory includes separating, from the free memory, a free
memory corresponding to the difference, and adding the
separated free memory to a corresponding free list.

BRIEF DESCRIPTION OF THE DRAWINGS

These and/or other aspects and advantages will become
apparent and more readily appreciated from the following
description of the embodiments, taken in conjunction with the
accompanying drawings of which:

FIG. 1 is a diagram illustrating a scratch pad memory
management device according to example embodiments;

FIG. 2 is a diagram illustrating a scratch pad memory and
a memory allocation table according to example embodi-
ments;

FIG. 3 is a diagram illustrating a detailed configuration of
a memory allocation table according to example embodi-
ments;

FIG. 4 is a diagram illustrating a detailed configuration of
a free memory of a scratch pad memory according to example
embodiments;

FIG. 5 is a diagram illustrating a detailed configuration of
a fixed block pool of a scratch pad memory according to
example embodiments;

FIG. 6 is a diagram illustrating a detailed configuration of
a scratch pad memory and a memory allocation table accord-
ing to example embodiments;

FIG. 7 is a flowchart illustrating a scratch pad memory
allocation method according to example embodiments; and

FIG. 8 is a flowchart illustrating a scratch pad memory
release method according to example embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

Reference will now be made in detail to the embodiments,
examples of which are illustrated in the accompanying draw-
ings, wherein like reference numerals refer to the like ele-
ments throughout. The embodiments are described below to
explain the present invention by referring to the figures.

FIG. 1 is a diagram illustrating a scratch pad memory
management device according to example embodiments.

Referring to FIG. 1, the scratch pad memory management
device 100 may include a memory managing unit 110 and a
scratch pad memory 120.

The scratch pad memory 120 may be divided into a plural-
ity of unit blocks and be managed. Here, a size of the unit
blocks may be arbitrarily set by a user, for example, 32 bytes,
and the scratch pad memory may be divided into the plurality
of unit blocks. Also, each of the plurality of unit blocks may

10

15

20

25

30

35

40

45

50

55

60

65

4

have a unique index. Here, indices of the plurality of unit
blocks of the scratch pad memory may respectively corre-
spond to indices of a memory allocation table. As an example,
a unit block 1 of the scratch pad memory may be managed in
a block having an index 1 among indices of a plurality of
blocks of the memory allocation table. Here, a corresponding
relationship between the memory allocation table and the
scratch pad memory will be described in detail with reference
to FIG. 2.

FIG. 2 is a diagram illustrating a scratch pad memory and
a memory allocation table according to example embodi-
ments.

Referring to FIG. 2, the scratch pad memory 220 is divided
into a plurality of unit blocks, and the divided plurality of unit
blocks may have unique indices. In this instance, the memory
allocation table 210 may include a number of blocks corre-
sponding to a number of the divided plurality of unit blocks,
the indices of the divided plurality ofunit blocks respectively
correspond to indexes of the blocks included in the memory
allocation table 210. Accordingly, metadata may be recorded
in the memory allocation table and may be read from the
memory allocation table by using an index of each unit block.

Referring again to FIG. 1, the memory managing unit 110
may be maintained in the main memory and may manage the
scratch pad memory. As an example, the memory managing
unit 110 may include a memory allocation table that stores
metadata to manage the scratch pad memory. Here, the
memory managing unit 110 may generate a memory chunk
that includes at least one unit block among the plurality of unit
blocks of the scratch pad memory, to efficiently mange the
scratch pad memory. Also, the memory chunk may be clas-
sified as one of a free memory, an allocated memory, and a
fixed block pool. Here, the fixed block pool may include a
memory chunk a size of which is non-integer multiples of the
unit block. As an example, when the size of the unit block is
32 bytes, a memory of integer multiples of the unit block,
such as 32 bytes, 64 bytes, and 96 bytes, may be managed by
the free memory, and a memory area of non-integer multiples
of the unit block, such as 24 bytes, may be managed by the
fixed block pool.

In this instance, the memory managing unit 110 may man-
age a memory based on different methods depending on a
type of a memory chunk of the scratch pad memory. As an
example, in the case of a free memory area of the scratch pad
memory, a size of an empty memory is recorded in a prior
block and a subsequent block of the memory allocation table
that manages the free memory area. Also, in the case of an
allocated memory area of the scratch pad memory, a size of a
memory that is allocated is recorded in a prior block and a
subsequent block of a memory allocation table that manages
the allocated memory area. Also, in the case of a fixed block
pool area of the scratch pad memory, at least one of location
information and identification information is stored in the
memory allocation table that manages the fixed block pool,
the identification information identifying the fixed block pool
and the location information recognizing a location in the
fixed block pool, when the memory chunk is classified as the
fixed block pool. Here, a mark indicating where each fixed
block is located in the fixed block pool is recorded in the
memory allocation table that manages the fixed block pool. A
detailed configuration of the memory allocation table will be
described in detail with reference to FIG. 3.

FIG. 3 is a diagram illustrating a detailed configuration of
a memory allocation table according to example embodi-
ments.

Referring to FIG. 3, the memory allocation table 310 may
include a plurality of blocks 311, 312, and 313. Each of the

US 9,152,547 B2

5

plurality of blocks 311, 312, and 313 may manage a scratch
pad memory of an identical index, and may store different
information based on a type of the scratch pad memory. As an
example, a size of a free area is stored in a prior block and a
subsequent block of a memory allocation table that manages
a free memory in the case of a free memory area 320 of the
scratch pad memory, and a size of an allocated area is stored
in a prior block and a subsequent block of a memory alloca-
tion table that manages an allocated memory in the case of an
allocated memory area 340.

Also, the free memory area of the scratch pad memory may
be classified based on a memory size and may be managed by
a free list. The scratch pad memory area to generate the free
list will be described in detail with reference to FIG. 4.

FIG. 4 is a diagram illustrating a detailed configuration of
a free memory of a scratch pad memory according to example
embodiments.

Referring to FIG. 4, an index of a previous free memory
411 and an index of a next free memory 412 are stored in a
prior block of a free memory block 410 to connect identically
sized free memories.

Also, a fixed block pool 330 may be managed based on a
size, and it will be described in detail with reference to FIG.
5.

FIG. 5 is a diagram illustrating a detailed configuration of
a fixed block pool of a scratch pad memory according to
example embodiments.

Referring to FIG. 5, the fixed block pool 510 may include
afirst storing area 511 to store a size of a fixed block, a second
storing area 512 to store an index of a previous fixed block
pool, a third storing area 513 to store an index of a next fixed
block pool, a fourth storing area 514 to represent an allocation
condition of each fixed block or a release condition of each
fixed block, and a fifth storing area 515 to store use data. The
allocation condition of each fixed block or the release condi-
tion of each block may be managed by an allocation bitmap.

FIG. 6 is a diagram illustrating a detailed configuration of
a scratch pad memory and a memory allocation table accord-
ing to example embodiments.

Referring to FIG. 6, the scratch pad memory may be con-
figured by one of free memories 621 and 622, an allocated
memory (not illustrated), and a fixed block pool 623, and free
areas configure a free list according to sizes of the free areas.
That is, free areas may be connected through indices for each
size of the free areas.

Also, indices of the memory allocation table 610 identical
to indices of the scratch pad memory 620 respectively per-
form managing of a free memory area in a free memory
managing area 611, managing of an allocated memory area in
a allocated memory managing area 612, and managing of a
fixed block pool area in a fixed block pool managing area 613.

However, the memory managing unit 110 may include a
memory allocating unit 111 to perform memory allocation
and a memory releasing unit 112 to perform memory release.

The memory allocating unit 111 may allocate a memory of
the fixed block pool when a size of a requested memory is a
size that is managed by the fixed block pool, and allocates a
free memory of a free list, the size of the free memory being
greater than the size of the requested memory and having a
smallest difference from the size of the requested memory
when the size of the requested memory is not managed by the
fixed block pool. That is, when there is a request for a memory
allocation, whether the size of the request memory is a size
that is managed by the fixed block pool may be determined,
and the requested memory may be preferentially allocated in
the fixed block pool. The fixed block pool may manage a
memory a size of which is non-integer multiples of a unit

10

20

25

40

45

55

6

block, and thus, when the requested memory is preferentially
allocated in the fixed block pool, a waste of a memory may
decrease. Also, when the size of the request memory is not a
size that is managed by the fixed block pool, a free memory a
size of which is closest to a size of the requested memory is
allocated, and thus, the memory may be effectively used. In
this instance, even though the free memory the size of which
is closest to the size of the requested memory is allocated,
when a difference in size between a size of a free memory of
the free list and the size of the request memory is greater than
orequal to a size of the unit block, a free memory correspond-
ing in size to the difference is separated from the free memory,
and the separated free memory is added to a corresponding
free list, and thus, use of the memory may be effectively
managed.

The memory releasing unit 112 may include a memory
incorporating unit (not illustrated), when a prior memory or a
subsequent memory of a memory chunk to be released is a
free memory, to incorporate the free memory and the memory
chunk to be released, and may also include a memory alloca-
tion table updating unit (not illustrated) to update a memory
allocation table in response to a memory release, a free list
updating unit (not illustrated) to update a free list in response
to the memory release, a location calculating unit (not illus-
trated) to calculate a fixed block location of the memory
chunk to be released, and a bitmap updating unit (not illus-
trated) to update a bitmap that manages the allocation or
release of the fixed block. As an example, the memory releas-
ing unit 112 may determine a size of the memory that is
requested to be released. When the memory to be released is
a fixed block, an index of the memory to be released is
calculated, and an allocation bitmap is updated. When the
memory to be released is not the fixed block, incorporation of
the memory is performed to obtain a larger memory area
when the incorporation is determined to be needed after
checking the prior memory and the subsequent memory ofthe
memory to be released.

As described above, when the scratch pad memory is
dynamically managed, an efficiency in using the scratch pad
memory of an application program may increase, and when
metadata for memory management is stored in a main
memory, a waste of the scratch pad memory may be
decreased.

However, the scratch pad memory management method
according to example embodiments may include dividing the
scratch pad memory into a plurality of unit blocks, maintain-
ing a memory allocation table in the main memory to manage
the scratch pad memory, and managing the scratch pad
memory by using the memory allocation table having indices
respectively corresponding to the plurality of unit blocks.

That is, the scratch pad memory management method
divides the scratch pad memory into the plurality of unit
blocks, stores the metadata for the memory management in
the main memory, and manages the scratch pad memory by
using the memory allocation table having indices respectively
corresponding to the plurality of unit blocks of the scratch pad
memory.

In this instance, the managing of the scratch pad memory
may include generating a memory chunk including at least
one unit block among the plurality of unit blocks of the
scratch pad memory, and classifying the memory chunk as
one of a free memory, an allocated memory, and a fixed block
pool.

FIG. 7 is a flowchart illustrating a scratch pad memory
allocation method according to example embodiments.

US 9,152,547 B2

7

Referring to FIG. 7, whether a size of a requested memory
is a size managed by a fixed block pool is determined in
operation 710.

In operation 720, when the size of the requested memory is
the size managed by the fixed block pool, whether the fixed
block pool exists in a free memory list may be determined.
That is, whether the requested size of fixed block pool exists
in the free memory list that constitutes a free area of the
memory as a list.

In operation 721, when the requested size of fixed block
pool does not exist in the free memory list, a fixed block pool
is generated and the generated fixed block pool is added to the
free memory list.

In operation 722, when the requested size of fixed block
pool exists in the free memory list, the existing fixed block
pool is selected.

In operation 723, a free block is selected by using an
allocation bitmap of the fixed block pool. That is, the alloca-
tion bitmap records an allocation or a release of the memory,
and thus the free block may be selected by using information
of the allocation bitmap.

In operation 724, allocation of the selected free block is
recorded by selecting the free block and updating the alloca-
tion bitmap.

In operation 725, whether all free blocks are used is deter-
mined, and in operation 726, when the all free block are used,
the fixed block pool is eliminated from the free memory list.

In operation 730, when the size of the requested memory is
not a size that is not managed by the fixed block pool, a free
memory list a size of which is closest to a size of the request
memory is selected. As an example, a free memory of a free
list a size of which is greater than the size of the requested
memory and has a smallest difference from the size of the
requested memory is allocated, thereby minimizing a size of
a memory that is wasted. As an example, when a size of the
requested memory is 60 bytes, and a 32 byte free memory list,
64 byte free memory list, and a 96 byte free memory list exist,
the 64 byte free memory list may be selected since a size of the
64 byte free memory list is greater than 60 bytes that is a size
of'the requested memory and has the smallest difference from
the size of the request memory.

In operation 731, a memory chunk is selected from the
selected free memory list. As described above, a free memory
list a size of which is closest to the size of the requested
memory is selected and a free memory is allocated from the
selected free memory list, thereby minimizing a waste of the
memory.

In operation 732, whether an area to be allocated is at least
one unit block greater than a requested area is determined.

In operation 733, when the area to be allocated is at least
one unit block greater than the size of the requested memory,
the memory chunk is separated, and a remaining portion is
added to a corresponding free memory list. As an example, a
size of a unit block is 32 bytes, the size of the requested
memory is 60 bytes, and 96 byte free memory list, 128 byte
free memory list, and 160 byte free memory list exist, a free
memory list having the smallest difference in size with the
requested memory may be the 96 byte free memory list. In
this instance, the size of the free memory of the selected free
memory list is at least one unit block (36 bytes) greater than
the size of the requested memory, and thus, a separate
memory (36 bytes) is separated and is added to a correspond-
ing free list.

In operation 734, the memory allocation table is updated
based on the memory allocation.

FIG. 8 is a flowchart illustrating a scratch pad memory
release method according to example embodiments.

20

30

40

45

65

8

Referring to FIG. 8, a memory chuck to be released is
determined by using a memory allocation table when a
memory release request is received in operation 810.

Inoperation 820, whether the memory chunk to be released
belongs to a fixed block pool is determined. As an example, a
size of the memory is found out by searching the memory
allocation table based on an index of the requested memory
and whether the size of the memory is a size that is managed
by the fixed block pool is determined.

In operation 830, when the memory chunk to be released
belongs to the fixed block pool, whether all blocks of the fixed
block pool are allocated is determined.

In operation 831, the fixed block pool is added to a free
memory list. That is, when a memory of the fixed block pool
where all the blocks are allocated is released, there exists a
free memory, and thus, the fixed block pool may be added to
the free memory list.

In operation 832, a location of a block of the memory to be
released is calculated.

In operation 833, an allocation bit map of the memory
chunk to be released is updated based on the calculated loca-
tion of the block.

In operation 834, whether the all blocks of the fixed block
pool are released is determined.

In operation 835, when the all blocks of the fixed block
pool are released, the fixed block pool is deleted from the free
memory list.

In operation 836, the fixed block pool is set as a free
memory chunk, and a memory release is performed based on
operations 840 through 843.

In operation 840, whether a prior memory or a subsequent
memory of the memory to be released is a free area is deter-
mined.

In operation 841, when the prior memory or the subsequent
memory of the memory to be released is the free area, the
memory to be released and the prior memory or the subse-
quent memory are incorporated.

In operation 842, the memory allocation table is updated
according to the memory release.

In operation 843, the changed free memory list is updated.

As described above, when the scratch pad memory is
dynamically managed, an efficiency in using the scratch pad
memory of an application program may increase, and when
metadata for memory management is stored in a main
memory, a waste of the scratch pad memory may be
decreased.

The embodiments can be implemented in computing hard-
ware (computing apparatus) and/or software, such as (in a
non-limiting example) any computer that can store, retrieve,
process and/or output data and/or communicate with other
computers. The results produced can be displayed on a dis-
play of the computing hardware. A program/software imple-
menting the embodiments may be recorded on computer-
readable media comprising computer-readable recording
media. The program/software implementing the embodi-
ments may also be transmitted over transmission communi-
cation media. Examples of the computer-readable recording
media include a magnetic recording apparatus, an optical
disk, a magneto-optical disk, and/or a semiconductor
memory (for example, RAM, ROM, etc.). Examples of the
magnetic recording apparatus include a hard disk device
(HDD), a flexible disk (FD), and a magnetic tape (MT).
Examples of the optical disk include a DVD (Digital Versatile
Disc), a DVD-RAM, a CD-ROM (Compact Disc-Read Only
Memory), and a CD-R (Recordable)/RW. An example of
communication media includes a carrier-wave signal.

US 9,152,547 B2

9

Although a few example embodiments have been shown
and described, it would be appreciated by those skilled in the
art that changes may be made in these example embodiments
without departing from the principles and spirit of the inven-
tion, the scope of which is defined in the claims and their
equivalents.

What is claimed is:

1. A scratch pad memory management device, the device
comprising:

a scratch pad memory being divided into a plurality of unit

blocks;

a main memory;

a memory allocation table; and

a memory managing unit being maintained in the main
memory to manage the scratch pad memory,

wherein the memory managing unit generates a memory
chunk comprising at least one of the plurality of unit
blocks of the scratch pad memory, and classifies the
memory chunk as one of a free memory, an allocated
memory, and a fixed block pool to manage the memory
chunk, and

wherein the memory managing unit stores, in the memory
allocation table, metadata to manage the plurality of unit
blocks, and

wherein a size of the fixed block pool is a non-integer
multiple of the unit block.

2. The device of claim 1, wherein indices of the plurality of
unit blocks respectively correspond to indices of the metadata
stored in the memory allocation table.

3. The device of claim 2, wherein the scratch pad memory
generates a free list where free memories are connected, the
free list being generated for each size of the free memory, and
stores, in a prior block of the free memory, an index of a
previous free memory and an index of a subsequent free
memory.

4. The device of claim 3, wherein: the memory managing
unit further comprises a memory allocating unit to manage
memory allocation in response to a memory use request, the
memory allocating unit allocates a memory of a fixed block
pool when a size of a requested memory is a size managed by
the fixed block pool, and allocates a free memory of a free list,
the size of the free memory being greater than the size of the
requested memory and closest to the size of the requested
memory when the size of the requested memory is not a size
managed by the fixed block pool.

5. The device of claim 4, wherein, when a difference
between the size of the free memory of the free list and the
size of the requested memory is greater than or equal to the
unit block, the memory allocating unit separates, from the
free memory, a free memory corresponding to the difference
and adds the separated free memory to a corresponding free
list.

6. The device of claim 3, wherein the memory managing
unit further comprises a memory releasing unit to manage a
memory release in response to a memory release request,
wherein the memory releasing unit comprises:

a memory incorporating unit, when a memory prior or
subsequent to a memory chunk to be released is a free
memory, to incorporate the free memory and the
memory chunk to be released; amemory allocation table
updating unit to update the memory allocation table in
response to the memory release; a free list updating unit
to update the free list in response to the memory release;
a location calculating unit to calculate a fixed block
location of the memory chunk to be released; and a
bitmap updating unit to update a bitmap that manages
the allocation or release of the fixed block.

5

10

—

5

20

25

30

35

40

45

50

55

60

65

10

7. The device of claim 1, wherein, when the classified
memory chunk is classified as the free memory, the memory
managing unit records a size of an empty memory in a prior
one of the unit blocks and a subsequent block of the memory
allocation table that manages the free memory.

8. The device of claim 1, wherein, when the classified
memory chunk is classified as the allocated memory, the
memory managing unit records a size of a memory that is
allocated in a prior one of the unit blocks and a subsequent
block of the memory allocation table that manages the allo-
cated memory.

9. The device of claim 1, wherein, when the memory chunk
is classified as the fixed block pool, the memory managing
unit includes at least one of location information and identi-
fication information in the memory allocation table that man-
ages the fixed block pool, the identification information iden-
tifying the fixed block pool, and the location information
recognizing a location in the fixed block pool.

10. The device of claim 1, wherein the fixed block pool of
the scratch pad memory comprises:

a first storing area to store a size of a fixed block;

a second storing area to store an index of a previous fixed

block pool;

a third storing area to store an index of a subsequent fixed

block pool;

a fourth storing area to indicate an allocation condition and

a release condition of each of the fixed blocks; and

a fifth storing area to store use data.

11. A scratch pad memory management method, the
method comprising:

dividing a scratch pad memory into a plurality of unit

blocks;

maintaining a memory allocation table in a main memory

to manage the scratch pad memory; and

managing the scratch pad memory comprising using the

memory allocation table having indices respectively
corresponding to the plurality of unit blocks,

wherein the managing of the scratch pad memory com-

prises:

generating a memory chunk including at least one unit

block among the plurality of unit blocks of the scratch
pad memory; and

classifying the memory chunk as one of a free memory, an

allocated memory, and a fixed block pool,

wherein a size of the fixed block pool is a non-integer

multiple of the unit block.

12. The method of claim 11, wherein the managing of the
scratch pad memory comprises recording a size of an empty
memory in a prior block and a subsequent block of a memory
allocation table that manages the free memory, when the
memory chunk is classified as the free memory.

13. The method of claim 11, wherein the managing of the
scratch pad memory comprises recording a size of a memory
that is allocated, in a prior block and a subsequent block of a
memory allocation table that manages the allocated memory,
when the memory chunk is classified as the allocated
memory.

14. The method of claim 11, wherein the managing of the
scratch pad memory comprises including at least one of loca-
tion information and identification information in the
memory allocation table that manages the fixed block pool,
the identification information identifying the fixed block pool
and the location information recognizing a location in the
fixed block pool, when the memory chunk is classified as the
fixed block pool.

15. The method of claim 11, wherein the managing of the
scratch pad memory comprises:

US 9,152,547 B2
11

generating a free list where free memories are connected;

and

storing an index of a previous free memory and an index of

a subsequent free memory in the prior block of the free
memory. 5

16. The method of claim 15, wherein the managing of the
scratch pad memory comprises:

allocating a memory in response to a memory use request;

and

releasing the memory in response to a memory release 10

request.

17. The method of claim 16, wherein the allocating of the
memory comprises allocating a memory of the fixed block
pool when a size of the requested memory is a size managed
by the fixed block pool, and allocating a free memory ofa free 15
list, the size of the free memory being greater than the size of
the requested memory and closest to the size of the requested
memory when the size of requested memory is not a size
managed by the fixed block pool.

18. The method of claim 17, wherein, when a difference 20
between the size of the free memory of the free list and the
size of the request memory is greater than or equal to the unit
block, the allocating of the memory comprises:

separating, from the free memory, a free memory corre-

sponding to the difference; and 25
adding the separated free memory to a corresponding free
list.

19. A non-transitory computer readable recording media
storing a program implementing the method of claim 11.

#* #* #* #* #* 30

